On the Webster Scalar Curvature Problem on the CR Sphere with a Cylindrical-type Symmetry
نویسندگان
چکیده
By variational methods, for a kind of Webster scalar curvature problems on the CR sphere with cylindrically symmetric curvature, we construct some multi-peak solutions as the parameter is sufficiently small under certain assumptions. We also obtain the asymptotic behaviors of the solutions.
منابع مشابه
Characterization for a class of pseudoconvex domains whose boundaries having positive constant pseudo scalar curvature
Let (M, θ) be a strictly pseudoconvex pseudo-Hermitian compact hypersurface in C in the sense of Webster [34] with a pseudo-Hermitian real oneform θ on M . Let Rθ be the Webster pseudo scalar curvature for M with respect to θ. By the solution of the CR Yamabe problem given by Jerison and Lee [18], Gamara and Yacoub [10] and Gamara [9] (for n = 1), there is a pseudo-Hermitian real one-form θ so ...
متن کاملLinear Weingarten hypersurfaces in a unit sphere
In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].
متن کاملLocal Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure
We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...
متن کاملConnected Sum Constructions for Constant Scalar Curvature Metrics
We give a general procedure for gluing together possibly noncompact manifolds of constant scalar curvature which satisfy an extra nondegeneracy hypothesis. Our aim is to provide a simple paradigm for making “analytic” connected sums. In particular, we can easily construct complete metrics of constant positive scalar curvature on the complement of certain configurations of an even number of poin...
متن کاملSolution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar
The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008